Project push
This commit is contained in:
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
# Virtual Env
|
||||
.venv
|
||||
|
||||
# Local data
|
||||
.DS_Store
|
||||
78
README.md
Normal file
78
README.md
Normal file
@@ -0,0 +1,78 @@
|
||||
# Audio Summary with local LLM
|
||||
|
||||
This tool is designed to provide a quick and concise summary of audio and video files. It supports summarizing content either from a local file or directly from YouTube. The tool uses Whisper for transcription and a local version of Mistral AI (Ollama) for generating summaries.
|
||||
|
||||
> [!TIP]
|
||||
> It is possible to change the model you wish to use.
|
||||
> To do this, change the `OLLAMA_MODEL` variable, and download the associated model via [ollama](https://github.com/ollama/ollama)
|
||||
|
||||
## Features
|
||||
|
||||
- **YouTube Integration**: Download and summarize content directly from YouTube.
|
||||
- **Local File Support**: Summarize audio files available on your local disk.
|
||||
- **Transcription**: Converts audio content to text using Whisper.
|
||||
- **Summarization**: Generates a concise summary using Mistral AI (Ollama).
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before you start using this tool, you need to install the following dependencies:
|
||||
|
||||
- Python 3.8 or higher
|
||||
- `pytube` for downloading videos from YouTube.
|
||||
- `pathlib`for local file
|
||||
- `openai-whisper` for audio transcription.
|
||||
- [Ollama](https://ollama.com) for LLM model management.
|
||||
- `ffmpeg` (required for whisper)
|
||||
|
||||
## Installation
|
||||
|
||||
### Python Requirements
|
||||
|
||||
Clone the repository and install the required Python packages:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/damienarnodo/audio-summary-with-local-LLM.git
|
||||
cd audio-summary-with-local-LLM
|
||||
pip install -r src/requirements.txt
|
||||
```
|
||||
|
||||
### LLM Requierement
|
||||
|
||||
[Download and install](https://ollama.com) Ollama to carry out LLM Management
|
||||
More details about LLM model supported can be discribe on the Ollama [github](https://github.com/ollama/ollama).
|
||||
|
||||
Download and use Mistral model :
|
||||
|
||||
```bash
|
||||
ollama pull mistral
|
||||
|
||||
## Test the access :
|
||||
ollama run mistral "tell me a joke"
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
The tool can be executed with the following command line options:
|
||||
|
||||
- `--from-youtube`: To download and summarize a video from YouTube.
|
||||
- `--from-local`: To load and summarize an audio or video file from the local disk.
|
||||
|
||||
### Examples
|
||||
|
||||
1. **Summarizing a YouTube video:**
|
||||
|
||||
```bash
|
||||
python src/summary.py --from-youtube <YouTube-Video-URL>
|
||||
```
|
||||
|
||||
2. **Summarizing a local audio file:**
|
||||
|
||||
```bash
|
||||
python src/summary.py --from-local <path-to-audio-file>
|
||||
```
|
||||
|
||||
The output summary will be saved in a markdown file in the specified output directory.
|
||||
|
||||
## Output
|
||||
|
||||
The summarized content is saved as a markdown file named `summary.md` in the current working directory. This file includes the transcribed text and its corresponding summary.
|
||||
3
src/requirements.txt
Normal file
3
src/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
openai-whisper==20231117
|
||||
pytube==15.0.0
|
||||
ollama==0.1.8
|
||||
98
src/summary.py
Normal file
98
src/summary.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import whisper
|
||||
import ollama
|
||||
import argparse
|
||||
from pytube import YouTube
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
WHISPER_MODEL = "base"
|
||||
OLLAMA_MODEL = "mistral"
|
||||
|
||||
# Function to download a video from YouTube
|
||||
def download_from_youtube(url: str, path: str):
|
||||
yt = YouTube(url)
|
||||
# Filter streams to get the highest resolution progressive mp4 stream
|
||||
stream = yt.streams.filter(file_extension="mp4", only_audio=True).first()
|
||||
# Download the video to the specified path
|
||||
stream.download(Path(path), filename="to_transcribe.mp4")
|
||||
|
||||
# Function to transcribe an audio file using the Whisper model
|
||||
def transcribe_file(file_path: str, output_file: str) -> str:
|
||||
# Load the Whisper model
|
||||
model = whisper.load_model(WHISPER_MODEL)
|
||||
# Transcribe the audio file
|
||||
transcribe = model.transcribe(file_path)
|
||||
# Save the transcribed text to the specified temporary file
|
||||
with open(output_file, 'w') as tmp_file:
|
||||
tmp_file.write(transcribe["text"])
|
||||
print(f"Transcription saved to file: {output_file}")
|
||||
# Return the transcribed text
|
||||
return transcribe["text"]
|
||||
|
||||
# Function to summarize a text using the Ollama model
|
||||
def summarize_text(text: str, output_path: str) -> str:
|
||||
# Define the system prompt for the Ollama model
|
||||
system_prompt = f"I would like for you to assume the role of a Technical Expert"
|
||||
# Define the user prompt for the Ollama model
|
||||
user_prompt = f"""Generate a concise summary of the text below.
|
||||
Text : {text}
|
||||
Add a title to the summary.
|
||||
Make sure your summary has useful and true information about the main points of the topic.
|
||||
Begin with a short introduction explaining the topic. If you can, use bullet points to list important details,
|
||||
and finish your summary with a concluding sentence."""
|
||||
|
||||
# Use the Ollama model to generate a summary
|
||||
response = ollama.chat(
|
||||
model=OLLAMA_MODEL,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": system_prompt,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": user_prompt,
|
||||
},
|
||||
],
|
||||
)
|
||||
# Print the generated summary
|
||||
return response["message"]["content"]
|
||||
|
||||
def main():
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description="Download, transcribe, and summarize audio or video files.")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("--from-youtube", type=str, help="YouTube URL to download.")
|
||||
group.add_argument("--from-local", type=str, help="Path to the local audio file.")
|
||||
parser.add_argument("--output", type=str, default="./summary.md", help="Output markdown file path.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Set up data directory
|
||||
data_directory = Path("tmp")
|
||||
|
||||
if args.from_youtube:
|
||||
# Download from YouTube
|
||||
print(f"Downloading YouTube video from {args.from_youtube}")
|
||||
download_from_youtube(args.from_youtube, str(data_directory))
|
||||
file_path = data_directory / "to_transcribe.mp4"
|
||||
elif args.from_local:
|
||||
# Use local file
|
||||
file_path = args.from_local
|
||||
|
||||
print(f"Transcribing file: {file_path}")
|
||||
# Transcribe the audio file
|
||||
transcript = transcribe_file(str(file_path), data_directory / "transcript.txt")
|
||||
|
||||
print("Generating summary...")
|
||||
# Generate summary
|
||||
summary = summarize_text(transcript, "./")
|
||||
|
||||
# Write summary to a markdown file
|
||||
with open(args.output, "w") as md_file:
|
||||
md_file.write("# Summary\n\n")
|
||||
md_file.write(summary)
|
||||
print(f"Summary written to {args.output}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user