Add support pour GPU (MPS and CUDA)

Migrate to `uv`
This commit is contained in:
darnodo
2025-03-28 12:58:39 +01:00
parent 4eb5f586d4
commit a8005cce50
6 changed files with 1336 additions and 45 deletions

5
.gitignore vendored
View File

@@ -1,6 +1,9 @@
audio_summary_with_local_LLM.egg-info/
.ruff_cache/
# Virtual Env
.venv
# Local data
.DS_Store
tmp
tmp
summary.md

184
README.md
View File

@@ -1,6 +1,6 @@
# Audio Summary with local LLM
# Audio Summary with Local LLM
This tool is designed to provide a quick and concise summary of audio and video files. It supports summarizing content either from a local file or directly from YouTube. The tool uses Whisper for transcription and a local version of Mistral AI (Ollama) for generating summaries.
This tool is designed to provide a quick and concise summary of audio and video files. It supports summarizing content either from a local file or directly from YouTube. The tool uses Whisper for transcription and a local version of Llama3 (via Ollama) for generating summaries.
> [!TIP]
> It is possible to change the model you wish to use.
@@ -9,45 +9,47 @@ This tool is designed to provide a quick and concise summary of audio and video
## Features
- **YouTube Integration**: Download and summarize content directly from YouTube.
- **Local File Support**: Summarize audio files available on your local disk.
- **Local File Support**: Summarize audio/video files available on your local disk.
- **Transcription**: Converts audio content to text using Whisper.
- **Summarization**: Generates a concise summary using Mistral AI (Ollama).
- **Summarization**: Generates a concise summary using Llama3 (Ollama).
- **Transcript Only Option**: Option to only transcribe the audio content without generating a summary.
- **Device Optimization**: Automatically uses the best available hardware (MPS for Mac, CUDA for NVIDIA GPUs, or CPU).
## Prerequisites
Before you start using this tool, you need to install the following dependencies:
- Python 3.8 or higher
- `pytube` for downloading videos from YouTube.
- `pathlib` for local file handling
- `openai-whisper` for audio transcription.
- [Ollama](https://ollama.com) for LLM model management.
- `ffmpeg` (required for whisper)
- Python 3.12 and lower than 3.13
- [Ollama](https://ollama.com) for LLM model management
- `ffmpeg` (required for audio processing)
- [uv](https://docs.astral.sh/uv/getting-started/installation/) for package management
## Installation
### Python Requirements
### Using uv
Clone the repository and install the required Python packages:
Clone the repository and install the required Python packages using [uv](https://github.com/astral-sh/uv):
```bash
git clone https://github.com/damienarnodo/audio-summary-with-local-LLM.git
cd audio-summary-with-local-LLM
pip install -r src/requirements.txt
# Create and activate a virtual environment with uv
uv sync
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
### LLM Requirement
[Download and install](https://ollama.com) Ollama to carry out LLM Management. More details about LLM models supported can be found on the Ollama [GitHub](https://github.com/ollama/ollama).
Download and use the Mistral model:
Download and use the Llama3 model:
```bash
ollama pull mistral
ollama pull llama3
## Test the access:
ollama run mistral "tell me a joke"
ollama run llama3 "tell me a joke"
```
## Usage
@@ -56,51 +58,175 @@ The tool can be executed with the following command line options:
- `--from-youtube`: To download and summarize a video from YouTube.
- `--from-local`: To load and summarize an audio or video file from the local disk.
- `--transcript-only`: To only transcribe the audio content without generating a summary. This option must be used with either `--from-youtube` or `--from-local`.
- `--output`: Specify the output file path (default: ./summary.md)
- `--transcript-only`: To only transcribe the audio content without generating a summary.
- `--language`: Select the language to be used for the transcription (default: en)
### Examples
1. **Summarizing a YouTube video:**
```bash
python src/summary.py --from-youtube <YouTube-Video-URL>
uv run python src/summary.py --from-youtube <YouTube-Video-URL>
```
2. **Summarizing a local audio file:**
```bash
python src/summary.py --from-local <path-to-audio-file>
uv run python src/summary.py --from-local <path-to-audio-file>
```
3. **Transcribing a YouTube video without summarizing:**
```bash
python src/summary.py --from-youtube <YouTube-Video-URL> --transcript-only
uv run python src/summary.py --from-youtube <YouTube-Video-URL> --transcript-only
```
4. **Transcribing a local audio file without summarizing:**
```bash
python src/summary.py --from-local <path-to-audio-file> --transcript-only
uv run python src/summary.py --from-local <path-to-audio-file> --transcript-only
```
5. **Specifying a custom output file:**
```bash
uv run python src/summary.py --from-youtube <YouTube-Video-URL> --output my_summary.md
```
The output summary will be saved in a markdown file in the specified output directory, while the transcript will be saved in the temporary directory.
## Output
The summarized content is saved as a markdown file named `summary.md` in the current working directory. This file includes the transcribed text and its corresponding summary. If `--transcript-only` is used, only the transcription will be saved in the temporary directory.
The summarized content is saved as a markdown file (default: `summary.md`) in the current working directory. This file includes a title and a concise summary of the content. The transcript is saved in the `tmp/transcript.txt` file.
## Hardware Acceleration
The tool automatically detects and uses the best available hardware:
- MPS (Metal Performance Shaders) for Apple Silicon Macs
- CUDA for NVIDIA GPUs
- Falls back to CPU when neither is available
### Handling Longer Audio Files
This tool can process audio files of any length. For files longer than 30 seconds, the script automatically:
1. Chunks the audio into manageable segments
2. Processes each chunk separately
3. Combines the results into a single transcript
This approach allows for efficient processing of longer content while managing memory usage. However, be aware that:
- Longer files will take proportionally more time to process
- Very long files (>30 minutes) may require significant processing time, especially on CPU
- For extremely long content, consider splitting the audio file into smaller segments before processing
If you encounter memory issues with very long files, you can try:
1. Using a smaller Whisper model by changing `WHISPER_MODEL` to "openai/whisper-base"
2. Reducing the `chunk_length_s` parameter in the `transcribe_file` function
3. Processing the file in separate parts and combining the summaries afterward
## Sources
- [YouTube Video Summarizer with OpenAI Whisper and GPT](https://github.com/mirabdullahyaser/Summarizing-Youtube-Videos-with-OpenAI-Whisper-and-GPT-3/tree/master)
- [Mistral Python Client](https://github.com/mistralai/client-python)
- [Ollama : Installez LLama 2 et Code LLama en quelques secondes !](https://www.geeek.org/tutoriel-installation-llama-2-et-code-llama/)
- [Ollama GitHub Repository](https://github.com/ollama/ollama)
- [Transformers by Hugging Face](https://huggingface.co/docs/transformers/index)
- [yt-dlp Documentation](https://github.com/yt-dlp/yt-dlp)
## Known Issues
## Troubleshooting
```python
ValueError: Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted. If reading from a remote URL, ensure that the URL is the full address to **download** the audio file.
### ffmpeg not found
If you encounter this error::
```bash
yt_dlp.utils.DownloadError: ERROR: Postprocessing: ffprobe and ffmpeg not found. Please install or provide the path using --ffmpeg-location
```
To fix it :
`ffmpeg -i my_file.mp4 -movflags faststart my_file_fixed.mp4`
Please refer to [this post](https://www.reddit.com/r/StacherIO/wiki/ffmpeg/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button)
### Audio Format Issues
If you encounter this error:
```bash
ValueError: Soundfile is either not in the correct format or is malformed. Ensure that the soundfile has a valid audio file extension (e.g. wav, flac or mp3) and is not corrupted.
```
Try converting your file with ffmpeg:
```bash
ffmpeg -i my_file.mp4 -movflags faststart my_file_fixed.mp4
```
### Memory Issues on CPU
If you're running on CPU and encounter memory issues during transcription, consider:
1. Using a smaller Whisper model
2. Processing shorter audio segments
3. Ensuring you have sufficient RAM available
### Slow Transcription
Transcription can be slow on CPU. For best performance:
1. Use a machine with GPU or Apple Silicon (MPS)
2. Keep audio files under 10 minutes when possible
3. Close other resource-intensive applications
### Update the Whisper or LLM Model
You can easily change the models used for transcription and summarization by modifying the variables at the top of the script:
```python
# Default models
OLLAMA_MODEL = "llama3"
WHISPER_MODEL = "openai/whisper-large-v2"
```
#### Changing the Whisper Model
To use a different Whisper model for transcription:
1. Update the `WHISPER_MODEL` variable with one of these options:
- `"openai/whisper-tiny"` (fastest, least accurate)
- `"openai/whisper-base"` (faster, less accurate)
- `"openai/whisper-small"` (balanced)
- `"openai/whisper-medium"` (slower, more accurate)
- `"openai/whisper-large-v2"` (slowest, most accurate)
2. Example:
```python
WHISPER_MODEL = "openai/whisper-medium" # A good balance between speed and accuracy
```
For CPU-only systems, using a smaller model like `whisper-base` is recommended for better performance.
#### Changing the LLM Model
To use a different model for summarization:
1. First, pull the desired model with Ollama:
```bash
ollama pull mistral # or any other supported model
```
2. Then update the `OLLAMA_MODEL` variable:
```python
OLLAMA_MODEL = "mistral" # or any other model you've pulled
```
3. Popular alternatives include:
- `"llama3"` (default)
- `"mistral"`
- `"llama2"`
- `"gemma:7b"`
- `"phi"`
For a complete list of available models, visit the [Ollama model library](https://ollama.com/library).

109
pyproject.toml Normal file
View File

@@ -0,0 +1,109 @@
[project]
name = "audio-summary-with-local-LLM"
dynamic = ["version"]
description = 'Sum up your local or remote files with a local LLM'
keywords = ["audio", "summary", "local-llm", "ollama", "whisper"]
readme = "README.md"
requires-python = ">=3.12, <3.13"
authors = [
{ name = "darnodo", email = "sepales.pret0h@icloud.com" },
]
dependencies = [
"ffmpeg>=1.4",
"ollama>=0.4.7",
"openai-whisper>=20240930",
"torch>=2.6.0",
"torchaudio>=2.6.0",
"torchvision>=0.21.0",
"transformers>=4.50.2",
"yt-dlp>=2025.3.27",
]
[tool.setuptools]
py-modules = []
[tool.ruff]
# Exclude a variety of commonly ignored directories.
exclude = [
".bzr",
".direnv",
".eggs",
".git",
".git-rewrite",
".hg",
".ipynb_checkpoints",
".mypy_cache",
".nox",
".pants.d",
".pyenv",
".pytest_cache",
".pytype",
".ruff_cache",
".svn",
".tox",
".venv",
".vscode",
"__pypackages__",
"_build",
"buck-out",
"build",
"dist",
"node_modules",
"site-packages",
"venv",
]
# Same as Black.
line-length = 88
indent-width = 4
# Assume Python 3.8
target-version = "py38"
[tool.ruff.lint]
# Enable Pyflakes (`F`) and a subset of the pycodestyle (`E`) codes by default.
# Unlike Flake8, Ruff doesn't enable pycodestyle warnings (`W`) or
# McCabe complexity (`C901`) by default.
select = ["E4", "E7", "E9", "F"]
ignore = []
# Allow fix for all enabled rules (when `--fix`) is provided.
fixable = ["ALL"]
unfixable = []
# Allow unused variables when underscore-prefixed.
dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
[tool.ruff.format]
# Like Black, use double quotes for strings.
quote-style = "double"
# Like Black, indent with spaces, rather than tabs.
indent-style = "space"
# Like Black, respect magic trailing commas.
skip-magic-trailing-comma = false
# Like Black, automatically detect the appropriate line ending.
line-ending = "auto"
# Enable auto-formatting of code examples in docstrings. Markdown,
# reStructuredText code/literal blocks and doctests are all supported.
#
# This is currently disabled by default, but it is planned for this
# to be opt-out in the future.
docstring-code-format = false
# Set the line length limit used when formatting code snippets in
# docstrings.
#
# This only has an effect when the `docstring-code-format` setting is
# enabled.
docstring-code-line-length = "dynamic"
[dependency-groups]
lint = [
"ruff>=0.0.17",
]
dev = [
"ipython>=5.10.0",
]

View File

@@ -1,6 +0,0 @@
openai-whisper==20231117
ollama==0.1.8
torch==2.5.0.dev20240712
torchaudio==2.4.0.dev20240712
torchvision==0.20.0.dev20240712
transformers==4.42.4

View File

@@ -3,8 +3,11 @@ import argparse
from pathlib import Path
from transformers import pipeline
import yt_dlp
import torch
OLLAMA_MODEL = "llama3"
WHISPER_MODEL = "openai/whisper-large-v2"
WHISPER_LANGUAGE = "en" # Set to desired language or None for auto-detection
# Function to download a video from YouTube using yt-dlp
def download_from_youtube(url: str, path: str):
@@ -20,26 +23,70 @@ def download_from_youtube(url: str, path: str):
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Function to get the best available device
def get_device():
if torch.backends.mps.is_available():
return "mps"
elif torch.cuda.is_available():
return "cuda"
else:
return "cpu"
# Function to transcribe an audio file using the transformers pipeline
def transcribe_file(file_path: str, output_file: str) -> str:
# Load the pipeline model for automatic speech recognition with MPS
transcriber_gpu = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device="mps")
def transcribe_file(file_path: str, output_file: str, language: str = None) -> str:
# Get the best available device
device = get_device()
print(f"Using device: {device} for transcription")
# Load the pipeline model for automatic speech recognition
transcriber = pipeline(
"automatic-speech-recognition",
model=WHISPER_MODEL,
device=device,
chunk_length_s=30, # Process in 30-second chunks
return_timestamps=True # Enable timestamp generation for longer audio
)
# Transcribe the audio file
transcribe = transcriber_gpu(file_path)
# For CPU, we might want to use a smaller model or chunk the audio if memory is an issue
if device == "cpu":
print("Warning: Using CPU for transcription. This may be slow.")
# Set up generation keyword arguments including language
generate_kwargs = {}
if language and language.lower() != "auto":
generate_kwargs["language"] = language
print(f"Transcribing in language: {language}")
else:
print("Using automatic language detection")
# Transcribe the audio file
print("Starting transcription (this may take a while for longer files)...")
transcribe = transcriber(file_path, generate_kwargs=generate_kwargs)
# Extract the full text from the chunked transcription
if isinstance(transcribe, dict) and "text" in transcribe:
# Simple case - just one chunk
full_text = transcribe["text"]
elif isinstance(transcribe, dict) and "chunks" in transcribe:
# Multiple chunks with timestamps
full_text = " ".join([chunk["text"] for chunk in transcribe["chunks"]])
else:
# Fallback for other return formats
full_text = transcribe["text"] if "text" in transcribe else str(transcribe)
# Save the transcribed text to the specified temporary file
with open(output_file, 'w') as tmp_file:
tmp_file.write(transcribe["text"])
tmp_file.write(full_text)
print(f"Transcription saved to file: {output_file}")
# Return the transcribed text
return transcribe["text"]
return full_text
# Function to summarize a text using the Ollama model
def summarize_text(text: str, output_path: str) -> str:
# Define the system prompt for the Ollama model
system_prompt = f"I would like for you to assume the role of a Technical Expert"
system_prompt = "I would like for you to assume the role of a Technical Expert"
# Define the user prompt for the Ollama model
user_prompt = f"""Generate a concise summary of the text below.
Text : {text}
@@ -73,9 +120,15 @@ def main():
group.add_argument("--from-local", type=str, help="Path to the local audio file.")
parser.add_argument("--output", type=str, default="./summary.md", help="Output markdown file path.")
parser.add_argument("--transcript-only", action='store_true', help="Only transcribe the file, do not summarize.")
parser.add_argument("--language", type=str, help="Language code for transcription (e.g., 'en', 'fr', 'es', or 'auto' for detection)")
args = parser.parse_args()
# Determine language setting
language = args.language if args.language else WHISPER_LANGUAGE
if language and language.lower() == "auto":
language = None # None triggers automatic language detection
# Set up data directory
data_directory = Path("tmp")
# Check if the directory exists, if not, create it
@@ -94,7 +147,7 @@ def main():
print(f"Transcribing file: {file_path}")
# Transcribe the audio file
transcript = transcribe_file(str(file_path), data_directory / "transcript.txt")
transcript = transcribe_file(str(file_path), data_directory / "transcript.txt", language)
if args.transcript_only:
print("Transcription complete. Skipping summary generation.")
@@ -111,4 +164,4 @@ def main():
print(f"Summary written to {args.output}")
if __name__ == "__main__":
main()
main()

1006
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff